Jordan’s Research

Jordan Cuff

Hello there! I’m Jordan Cuff, a postdoctoral researcher with an unquashable enthusiasm for inter-specific interactions, nutritional ecology and molecular ecology (or networks, nutrients and nucleotides).

I’m currently based at Newcastle University looking at ecological networks in agriculture and how they are impacted by different field margins, particularly in the context of ecosystem service provision.

My Research Themes

Trophic Interactions

Throughout my PhD I became increasingly enthusiastic about trophic ecology. This has mostly revolved around spiders, but I’ve had the joy of dabbling in or helping out with beetles, other invertebrates, reptiles and birds. This has also involved critically reviewing potential pitfalls in the way in which we assess trophic interactions. Beyond simply identifying what an organism has eaten, I am fascinated by how predators choose their next meal (prey choice). I am constantly looking for ways to innovate in this field, whether that’s through new technologies like nanopore sequencing, or new ways of analysing data.

Molecular Ecology

Alongside (and often for) my molecular dietary analyses, I’ve helped to design or test PCR primers for everything from nematodes, through aphids, to spider gut contents (for both wolf spiders and money spiders). I love trying new techniques and dabbling in different applications. Most of my molecular research has used Illumina sequencing platforms, but I have begun to explore nanopore sequencing for everything from mitochondrial assembly to dietary analysis and metaviromics.

Nutritional Ecology

The crux of my PhD was the identification of nutrient-specific foraging (the selection of prey based on their nutrient contents) in the field. Whilst I was a nutrient novice at the start of this process, I soon had to develop a protocol for the streamlined analysis of nutrient content in small invertebrates. From here, my interest in nutrient dynamics has truly soared. I am hoping to continue investigating nutrient flux in ecological networks in my postdoctoral research.

Community Ecology

Since my very first research project on earthworm communities in agricultural landscapes, I have been fascinated by the dynamic communities of invertebrates abundant across the natural world. I have compared invertebrate communities to identify the arthropods cohabiting with species of conservation concern, to determine how predators choose their prey and to highlight the importance of different habitat types or how species assemblages differ along spatial gradients. Community ecology is fundamental to understanding trophic interactions, so my fascination with these aggregations of invertebrates will not taper off anytime soon!

Ecological Chemistry

Alongside my nutrient work, I have dabbled in other forms of biochemistry and chemical ecology. The importance of chemicals in invertebrate communication truly cannot be overstated, which has led me to analyse scents to better understand habitat choice, predator-prey dynamics and even disease vectoring. Through volatile organic compounds (VOCs) and cuticular hydrocarbons (CHCs), I want to explore further the interactions between predators and their prey.

Natural History

After spending three months working in the National Museum of Wales in Cardiff as a curatorial assistant, my interest in natural history was truly piqued. During this magical time, I had the immense pleasure of taking large mollusc collections, including that of Hamilton Quick, from acquisition through to placement in the wider museum collections. I also dabbled in mollusc materials collected for various research projects from South Wales to Tanzania. I have also collaborated with arachnologists in the National Natural History Collections in the Hebrew University of Jerusalem to describe the spatial dynamics of cave spiders. Through this aspect of my work, I have applied my molecular experience to the identification of species new to Britain too.

My Publications

Peer-reviewed publications:

Coming soon!

Coming soon!

Coming soon!

Cuff et al. (in press). Density-independent prey choice, taxonomy, life history and web characteristics determine the diet and biocontrol potential of spiders (Linyphiidae and Lycosidae) in cereal crops. Environmental DNA.

Drake et al. (in press). An assessment of minimum sequence copy thresholds for identifying and reducing the prevalence of artefacts in dietary metabarcoding data. Methods in Ecology and Evolution.

Tercel et al. (in press). Native predator and introduced prey: the role of non-native animals and plants in the diet of a keystone island-endemic omnivore. Ecology and Evolution.

Cuff et al. (2020). ‘Using DNA metabarcoding to analyse the gut contents of spiders’ in Wheater et al. Practical Field Ecology. 2nd edition, Wiley-Blackwell, pp 121-124.

Lafage et al. (2019). A new primer for metabarcoding of spider gut contents. Environmental DNA.

Informal articles, protocols and preprints:

Cuff (2020). British Arachnological Society Lockdown Spider Surveys. British Arachnological Society Newsletter.

Cuff (2016). Home is where the heart-rot is. SEWBReC: Gwent-Glamorgan Recorders’ Newsletter.